SAS sends Singapore's first experiment to the International Space Station
SAS sends Singapore's first experiment to the International Space Station

SINGAPORE, June 5, 2017 — On Sunday, June 4, SpaceX's Falcon 9 successfully lifted off from the Kennedy Space Center in Florida, United States, and sent the Dragon spacecraft into orbit. The spacecraft was carrying an experiment built by students at the Singapore American School (SAS) — the first ever experiment to be sent to space by high schoolers in Singapore.

The MicroLab — a container that encases a scientific experiment — is scheduled to arrive on the International Space Station (ISS) after two days of spaceflight. This is the first time a Singaporean experiment will be installed by astronauts on board the ISS.

For over a year, student leader Sunita Srivatsan and her team of five — Jaclyn Chan, Keshav Jagannath, Annie Kim, Madeline Smith, and Devansh Tandon, guided by SAS Robotics coaches Meredith White and Bart Millar — have been meticulously planning, collaborating, and researching to set up an experiment to study the effects of microgravity on mutations in bacteria.

As part of the Bhattacharya Space Enterprise program and under the mentorship of ex-National Aeronautics and Space Administration (NASA) scientist Dr. Bidushi Bhattacharya, CEO and founder of Bhattacharya Space Enterprises and Priyadarshini Majumdar, a National University of Singapore graduate, the students learned about both the research and commercial aspects of space technology. "This is a very exciting time for commercial spacetech growth, thanks to companies such as SpaceX. Traditionally, space-related career paths were feasible for students from larger nations, but rapid privatization and miniaturization of electronics has made space accessible globally. I am really excited about this group of students in Singapore who are actually delivering something into orbit," said Dr. Bhattacharya.

Dr. Chip Kimball, superintendent of SAS, who is a strong advocate of exploring interests and pursuing passions said, "Backed by a culture of possibilities, students at SAS are offered every opportunity to dive deep into an area of interest while building competence and self-efficacy to engage and impact the world around them. It has to be one of the most exciting things in the world to be able to take the science they're learning and applying it to a new frontier." The SAS Foundation, an organization that continues to strengthen the school for the future by funding educational programs, operations, and capital initiatives, has been a strong supporter of this project. The organization paid for mentor training in San Jose, biological and mechanical materials to create the experiment, orbital launch services on the Falcon 9 spacecraft, and leased space aboard the ISS.

Majumdar was instrumental in encouraging the team to focus on the various stages of the mission, formulate a plan and execute it. In six months time, the students went from finding it hard to visualize how everything would fit into a MicroLab to building the engineering model and constructing the flight model in about a week.

The MicroLab will test radiation levels in space using melanin genes implanted in E. coli bacteria. Once the rocket's capsule docks at the ISS, astronauts will offload the MicroLab and plug it into a rack that provides the power needed to run the experiment in a microgravity environment. Driven by a circuit board and computer programme that the students designed, the experiment will run for one month.

Periodically, astronauts will download data and photos back to earth so the students can collect, analyze, and monitor their experiment. The students will also be conducting their ground truth (control) experiments here at the school after the experiment is returned to them post-flight. If the team's hypothesis is proven true, NASA will genetically modify plants to produce more melanin to make growing plants in the conditions of space easier.

"The main purpose of this experiment is to make space technology development a tangible career option for students. Young people across Singapore see this project as something that has been built by kids their age, handed off to NASA and managed by astronauts for them. We are hoping to take this to other schools in Singapore in the coming years," said Dr. Bhattacharya.

According to Sunita Srivatsan, SAS senior and team leader for the project, "It's not often that high schoolers get an opportunity of this magnitude, and we're grateful to the SAS community, the SAS Foundation, and to our coaches and mentors. It wasn't always smooth sailing, but the idea that our experiment could potentially impact the future of space research, kept us focused in the face of roadblocks and challenges."

Powered by Finalsite