by Sia Sharma, Jay Alldritt, and Aditya Chatterjee

This article was written by Sia Sharma, Jay Aldritt, and Aditya Chatterjee.

Image result for cygnus ng-11

After seven months of innovating, designing, and building, we are proud to announce that our Piezoelectric crystal experiment has been successfully launched to the International Space Station (ISS). The launch took place on April 17 at 4:46 p.m. Eastern Daylight Time. 

This specific launch took place to deliver additional cargo to the ISS. The total of three imperial tons of cargo consists of crew supplies, spacewalk equipment, computer resources, and science investigations such as our own. Approximately 37 hours after launching from the Mid-Atlantic Regional Spaceport (MARS) in Virginia, Northrop Grumman’s NG-11 Cygnus spacecraft has arrived at the ISS. Grappled by station astronauts Anne McClain (NASA) and David Saint-Jacques (CSA) using the Canadarm2, the S.S. Roger Chaffee will now be berthed to the Station’s Unity (Node-1) Nadir port.

Our experiment focused on solutions of Potassium Sodium Tartrate crystallizing when exposed to the atmospheric air. The solutions itself took up the majority of our time due to the fact that our concentrations of salt to water were not matching up. We started off trying to work on homemade solutions, but we quickly realized that it would take too long and every trial would not have the same constants. We looked into getting the salts, and once we accomplished this, our biggest issue became dealing with the ratios. If the ratios were too high, the solution would crystalize almost immediately. On the other hand, too low of a concentration would dissolve the crystals, or not be exposed enough to create crystals in the first place. 

When we began experimenting with different ratios and took note of our results, we began to see a pattern. It took a while, but we soon came up with the perfect ratio of salt to water, which was 12:25 (g/ml). 

Image result for potassium sodium tartrate crystals

Our team settled on experimenting with piezoelectric crystals due to a variety of applications. The term “piezoelectric” derives from the Greek term “piezen” which means to push or squeeze. As a result, when pressure (through compression by metal plates) is applied on the piezoelectric crystals, it exerts electricity. Piezoelectric crystals are used in watches (as quartz). They’re also used in microphones, in which a strip of crystal absorbs analog frequencies and converts them to electricity. Gas lighters use pressure to conduct gas and a spark to light up, in a phenomenon known as the “piezoelectric effect.” Our team focused on investigating and constructing a flight unit to determine whether or not piezoelectric crystals could grow in a microgravity environment. 

The next step for us is to analyze the data of the experiment once it returns to earth and compare the space experiment to our ground experiment to see any changes or similarities. This will help us create our concluding statements.


Stay tuned for more updates and findings from their experiment.

  • experiment
  • space lab



Recent Posts

by SAS Rainbow Parents and Allies

Rainbow Parents and Allies parent group at SAS is a vibrant and generous group of parents who meet monthly to support and learn from each other. Find out more about the group that offers an inclusive, supportive environment for parents and allies of the LGBTQ community to talk about gender and sexuality topics that support positive self-esteem, healthy identity development, and acceptance of differences for children within SAS.

by Sara G.

A group of middle school students investigated and researched how COVID-19 has impacted their lives. They started a Google site with their videos, photo essays, and journal. Sara G. shares how grateful she is to be in Singapore during this difficult time. 

by Michael Fuma

It was a massive sigh of relief for many of our students when the Singapore government announced that schools would resume June 2 onward. High school student Michael Fuma shares how the first day back on campus after a two-month hiatus brought a deep sense of pride for our Singapore American School community.