Standard 1: Life Science

No standards apply.

Standard 2: Physical Science

As a basis for understanding Physical Science, students will develop the following knowledge, skills and understandings:

2.1 Students understand the structure and the properties of matter.

- **2.1.1** Know the structure of an atom:
 - 2.1.1.1 Negative electrons occupy most of the space in the atom.
 - 2.1.1.2 Neutrons and positive protons make up the nucleus of the atom.
 - 2.1.1.3 Protons and neutrons are almost two thousand times heavier than an electron.
 - 2.1.1.4 The electric force between the nucleus and electrons hold the atom together.

- **2.1.2** Understand how elements are arranged in the periodic table, and how this arrangement shows repeating patterns among elements with similar properties:
 - 2.1.2.1 Number of protons, neutrons and electrons.
 - 2.1.2.2 Relation between atomic number and atomic mass.

- **2.1.3** Know that the number of electrons in an atom determines whether the atom is electrically neutral or an ion:
 - 2.1.3.1 Electrically neutral atoms contain equal numbers of protons and electrons.
 - 2.1.3.2 A positively charged atom has lost one or more electrons.
 - 2.1.3.3 A negatively charged atom has gained one or more electrons.

- **2.1.4** Know that most elements have two or more isotopes (ie. Atoms that differ in the number of neutrons in the nucleus), although the number or neutrons has little effect on how the atom interacts with others, it does affect the mass and stability of the nucleus

- **2.1.5** Know how radioactive isotopes can be used to estimate the age of materials that contain them because radioactive isotopes undergo spontaneous nuclear reactions and emit particles and/or wavelike radiation, the decay of any one nucleus cannot be predicted, but a large group of identical nuclei decay at a predictable rate, which can be used to estimate the material's age

- **2.1.6** Know that neutrons and protons are made up of even small constituents.

2.2 Students understand chemical reactions.

2.3 Students understand the sources and properties of energy.

- **2.3.1** Know how the energy associated with individual atoms and molecules can be used to identify the substances they comprise:
 - 2.3.1.1 Each kind of atom or molecule can gain or lose energy only in particular discrete amounts, and thus can absorb and emit light only at wavelengths corresponding to these amounts.

- **2.3.2** Know that nuclear reactions convert a fraction of the mass of interacting particles into energy (fission involves the splitting of a large nucleus into smaller
2.3.3 Know that waves (e.g. sound, seismic, water, light) have energy and can transfer energy when they interact with matter.

2.3.4 Know the range of electromagnetic spectrum:
 - 2.3.4.1 Radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, x-rays, gamma rays.
 - 2.3.4.2 Electromagnetic waves result when a charged object is accelerated or decelerated.
 - 2.3.4.3 The energy of electromagnetic waves is carried in packets whose magnitude is inversely proportional to the wavelength.

2.4 Students understand forces and motion.

2.4.1 Know that magnetic forces are very closely related to electric forces and can be thought of as different aspects of a single electromagnetic force:
 - 2.4.1.1 Moving electric charges produce magnetic forces and moving magnets produce electric forces.
 - 2.4.1.2 The interplay of these forces is the basis for electric motors, generators, radio, television, and many other modern technologies.

2.4.2 Know that nuclear forces are much stronger than electromagnetic forces, which are vastly stronger than gravitational forces, the strength of nuclear forces explains why great amounts of energy are released from the nuclear reactions in atomic or hydrogen bombs, and in the sun and other stars.

2.4.3 Know that the strength of the gravitational force between two masses is proportional to the masses and inversely proportional to the square of the distance between them.

2.4.4 Know that the strength of the electric force between two charged objects is proportional to the charges (opposite charges attract whereas like charges repel) and, as with gravitation, inversely proportional to the square of the distance between them.

2.4.5 Know that electromagnetic forces exist within and between atoms:
 - 2.4.5.1 Electric forces between oppositely charged electrons and protons hold atoms and molecules together, and are involved in all chemical reactions.
 - 2.4.5.2 Electric forces hold solid and liquid materials together and act between objects when they are in contact.

2.4.6 Know how different kinds of materials respond to electric forces:
 - 2.4.6.1 As insulators, semiconductors, conductors, superconductors

2.4.7 Know that materials that contain equal proportions of positive and negative charges are electrically neutral, but a very small excess or deficit of negative charges in a material produces noticeable electric forces.

2.4.8 Know that laws of motion can be used to determine the effects of forces on the motion of objects:
 - 2.4.8.1 Objects change their motion only when a net force is applied.
 - 2.4.8.2 Whenever one object exerts force on another, a force equal in magnitude and opposite in direction is exerted on the first object; the magnitude of the change in motion can be calculated using the relationship \(F=ma \), which is independent of the nature of the force.

2.4.9 Know that apparent changes in wavelength can provide information about changes in motion because the observed wavelength of a wave depends upon the relative motion of the sources and the observer; if either the source or observer is moving toward the other, the observed wavelength is shorter; if either is moving away, the wavelength is longer.

2.4.10 Understand general concepts related to the theory of special relativity:
 - 2.4.10.1 In contrast to other moving things, the speed of light is the same for all observers, no matter how they or the light source happen to be moving.
 - 2.4.10.2 The laws of physics are the same in any inertial frame of reference.

2.5 Students understand waves and optics.
2.6 Students understand electricity and magnetism.

Standard 3: Earth and Space Science

As *a basis for understanding* Earth and Space Science, *students will develop the following knowledge, skills and understandings:*

3.1 Students understand Earth’s composition and structure.

3.2 Students understand the composition and structure of the atmosphere.

3.3 Students understand the composition and structure of the universe.

3.3.1 Know methods used to estimate geologic time:

3.3.1.1 Using the known decay rates of radioactive isotopes present in rock to measure the time since the rock was formed.

Standard 4: Nature of Science

As *a basis for understanding* the nature of science as it relates to scientific knowledge, scientific inquiry, and scientific enterprise and to address content in the other standards *students will:*

4.1 Apply proper scientific measures when solving problems.

4.1.1 Know and employ metric units when measuring and problem solving:

4.1.1.1 Identify the seven major SI and laboratory metric units, i.e., meter, kilogram, second, ampere, Kelvin, mole, and candela.

4.1.1.2 Convert between prefixes nano to mega within the metric system.

4.1.1.3 Differentiate and convert between the two temperature scales; Celsius and Kelvin.

4.1.1.4 Contribute and solve derived values (volume and density) using correct SI units.

4.1.2 Use problem solving strategies (including dimensional analysis) to solve mathematical problems

4.1.2.1 Identify the potentially important information given in a problem when choosing an appropriate solution.

4.1.2.2 Determine the true question and/or conceptual premise; applying appropriate units when applicable.

4.1.2.3 Properly manipulate conversion factors to dimensional analysis questions.

4.1.3 Reason un avoidable sources of error when discussing accuracy and precision (uncertainty) of results; examples include human, instrumental, systematic, and random errors

4.1.3.1 Reason the number of significant digits, accuracy, and precision in problems and laboratory tools.

4.1.3.2 Answer mathematical operations using scientific notation.

4.1.4 Demonstrate safety procedures within lab situations:

4.1.4.1 Demonstrate proper lab safety.

4.1.4.2 Locate and explain how to properly use safety equipment in the lab.

Adapted from National (NSES), McRel and California State Standards

Sub-standards that appear gray are not addressed in this course.

Singapore American School, January 14, 2009
4.1.5 Use technology and mathematics (eg. measurement, formulas, charts, graphs) to perform accurate scientific investigations and communications
4.1.5.1 Select and use appropriate lab tools, measuring devices, calculators, computers, probe ware, etc. correctly during investigations
4.1.5.2 Utilize appropriate measurements, formulas, charts, graphs, etc. when analyzing laboratory data

4.2 Investigate the natural world using scientific inquiry.
4.2.1 Effectively contribute to a collaborative group; including accepting roles, following norms, and successfully communicating.
4.2.2 Design and conduct open ended scientific investigations; confirming scientific laws, theories, and models; or to explore new aspects of the natural world and new areas of science:
 4.2.2.1 Differentiate between hypothesis and theory.
 4.2.2.2 Recognize and evaluate the usefulness and limitations of models and theories as scientific representations of reality.
4.2.3 Devise investigations that:
 4.2.3.1 Identify a focused problem or research question
 4.2.3.2 Formulate testable hypotheses that is related to the research question; supporting it quantitatively when appropriate
 4.2.3.3 Select relevant independent and dependent variables
 4.2.3.4 Identify and clarify the method and controls; using appropriate apparatus
 4.2.3.5 Demonstrate competence in using laboratory equipment (seeking assistance when required); paying attention to safety issues
 4.2.3.6 Adapt to new and unforeseen circumstances while following instructions.
 4.2.3.7 Employ methods that collect sufficient and relevant quantitative and/or qualitative data; using appropriate units.
 4.2.3.8 Organize and display raw data for easier interpretation and analysis data.
 4.2.3.9 Determine errors, their quantitative/qualitative effects they have on results, and calculate percent error when possible.
 4.2.3.10 Formulate a conclusion based on interpretation of results with an explanation, and, where appropriate, compare results with literature values.
 4.2.3.11 Receive critical response from others

4.2.4 Reason that when conditions of an investigation cannot be controlled, it may be necessary to discern patterns by observing a wide range of natural occurrences

4.2.5 Know that conceptual principles and knowledge guide scientific inquiries; historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists

4.2.6 Comprehend why scientists conduct investigations:
 4.2.6.1 To discover new aspects of the natural world
 4.2.6.2 To explain recently observed phenomena
 4.2.6.3 To test the conclusions of prior investigations
 4.2.6.4 To test predictions of current theories

4.2.7 Appreciate that investigations and public communication among scientists must meet specific criteria in order to be accepted as new knowledge and methods:
 4.2.7.1 Strive for certainty of proposed solutions using experimental standards.
 4.2.7.2 Pursue arguments that are logical and do demonstrate connections between natural phenomena, investigations, and the historical body of scientific knowledge.
 4.2.7.3 Convey explanations with logical structure and rules of evidence.
 4.2.7.4 Show commitment to making public their methods, procedures, and conclusions.

Adapted from National (NSES), McRel and California State Standards
Sub-standards that appear gray are not addressed in this course.
4.2.7 Report methods and procedures used to obtain evidence to enhance opportunities for further research.

4.2.8 Understand the Nature of Science Inquiry is driven by the desire to understand the natural world and seeks to answer questions that may or may not directly influence humans.

4.3 Evaluate the acquisition, development, and modification of scientific knowledge in the past, present, and future.

4.3.1 Know ways in which science distinguishes itself from other bodies of knowledge, through use of empirical standards and logical arguments.

4.3.2 Be aware that scientific explanations must meet certain criteria to be considered valid:

- **4.3.2.1** Must be consistent with experimental and observational evidence about nature
- **4.3.2.2** Make accurate predictions about systems being studied
- **4.3.2.3** Be logical
- **4.3.2.4** Respect rules of evidence
- **4.3.2.5** Be open to criticism
- **4.3.2.6** Report methods and procedures
- **4.3.2.7** Make a commitment to making knowledge public

4.3.3 Reason how scientific knowledge changes and accumulates over time:

- **4.3.3.1** All scientific knowledge is subject to change as new evidence becomes available
- **4.3.3.2** Some scientific ideas are incomplete and opportunity exists in these areas for new advances
- **4.3.3.3** Scientific knowledge is continually tested, revised, and occasionally discarded as new evidence is obtained.

4.3.4 Accept and anticipate that from time to time, major shifts occur in the scientific view of how the world works, but usually the changes that take place in the body of scientific knowledge are usually small modifications of prior knowledge

4.4 Examine how science and its enterprises impact society.

4.4.1 Compare and Contrast Science and Technology

4.4.2 Reflect that, throughout history, diverse cultures have developed scientific ideas and solved human problems through technology

4.4.3 Understand that individuals and teams contribute to scientific knowledge and understanding at different levels of complexity:

- **4.4.3.1** Conducting basic field studies or improving advanced technology
- **4.4.3.2** Creating New Technologies
- **4.4.3.3** Solving technological problems
- **4.4.3.4** Collaborating (sometimes between hundreds of people) on a major scientific question or technological problem

4.4.4 Comprehend the free and rapid interplay of theoretical ideas and experiments results in published scientific literature maintains crucial links between scientific fields

4.4.5 Develop information and technology skills which are essential in modern scientific endeavors.

4.4.6 Appreciate that progress in Science/Technology can relate to social issues and challenges (eg. Funding priorities, health problems)

4.4.7 Understand that there are ethical traditions associated with the scientific enterprise:

Adapted from National (NSES), McRel and California State Standards
4.4.7.1 Be committed to peer review.
4.4.7.2 Report truthfully about methods and outcomes of investigations.
4.4.7.3 Publish results of work with the expectation of peer review.
4.4.7.4 Scientists who violate these traditions are censored by their peers.

4.4.8 Consider that scientists and engineers can only conduct research on human subjects or stem cells if they have the consent of the subjects or governing bodies.
4.4.9 Accept that technology is often driven by the desire to help meet human needs, solve human problems, and fulfill human aspirations.
4.4.10 Be able to assess a proposal from a scientific enterprise; including questions about: alternatives, risks, costs, benefits, consideration of who benefits, who suffers, who pays, who gains, and who bears the risks.
4.4.11 Validate that credible technological resources come from professional presentations, journal publications, and databases.
4.4.12 Understand that science and technology are essential social enterprises, but alone they can only indicate what can happen, not what should happen.
4.4.13 Acknowledge science is interdependent on different fields of study in different disciplines.
 4.4.13.1 Scientists in different disciplines ask different questions, use different methods of investigation and accept different types of evidence to support their explanations.
 4.4.13.2 Many scientific investigations require the contributions of individuals from different disciplines.
 4.4.13.3 New disciplines of science (such as geophysics, biochemistry, and genomics) often emerge at the interface of older disciplines.
4.4.14 Undergo searches for current areas where data, information, and understanding are incomplete; therefore providing the best opportunity for students to advance in the science related career opportunities that optimize opportunities for future advancement in science related careers.
4.4.15 Comprehend that creativity, imagination, and a good knowledge base are all required in the work of science and engineering.

4.5 Students understand the connections among science, global issues and sustainable solutions.
As a basis for this, students will understand:
 4.5.1 Climate Change (Global Warming)
 4.5.2 Biodiversity and Ecosystem Losses
 4.5.3 Fisheries Depletion
 4.5.4 Deforestation
 4.5.5 Water Deficits
 4.5.6 Air, Water and Soil Pollution
 4.5.7 Global Infectious Diseases
 4.5.8 Natural Disaster Prevention and Mitigation
 4.5.9 Human Population Dynamics
 4.5.10 Unsustainable Land Use (unsustainable agriculture, livestock grazing, urban sprawl, landfills, hazardous waste, mining and mineral extraction)
 4.5.11 Solid Waste Management (waste minimization, recycling, closed loop systems)
 4.5.12 Energy Conservation, alternative energy, alternative fuels

Adapted from National (NSES), McRel and California State Standards
Sub-standards that appear gray are not addressed in this course.

Singapore American School, January 14, 2009